Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hot-electron dynamics in quantum dots manipulated by spin-exchange Auger interactions

Abstract

The ability to effectively manipulate non-equilibrium ‘hot’ carriers could enable novel schemes for highly efficient energy harvesting and interconversion. In the case of semiconductor materials, realization of such hot-carrier schemes is complicated by extremely fast intraband cooling (picosecond to subpicosecond time scales) due to processes such as phonon emission. Here we show that using magnetically doped colloidal semiconductor quantum dots we can achieve extremely fast rates of spin-exchange processes that allow for ‘uphill’ energy transfer with an energy-gain rate that greatly exceeds the intraband cooling rate. This represents a dramatic departure from the usual situation where energy-dissipation via phonon emission outpaces energy gains due to standard Auger-type energy transfer at least by a factor of three. A highly favourable energy gain/loss rate ratio realized in magnetically doped quantum dots can enable effective schemes for capturing kinetic energy of hot, unrelaxed carriers via processes such as spin-exchange-mediated carrier multiplication and upconversion, hot-carrier extraction and electron photoemission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Auger-type energy-transfer processes in undoped and Mn-doped semiconductors.
Fig. 2: Subpicosecond energy-transfer dynamics in Mn-doped QDs revealed by TA studies.
Fig. 3: Spin-exchange Auger ionization of a Mn-doped QD due to ejection of a hot electron.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the authors on reasonable request.

References

  1. Chang, C. C. Auger electron spectroscopy. Surf. Sci. 25, 53–79 (1971).

    CAS  Google Scholar 

  2. Dziewior, J. & Schmid, W. Auger coefficients for highly doped and highly excited silicon. Appl. Phys. Lett. 31, 346–348 (1977).

    CAS  Google Scholar 

  3. Chepic, D. I. et al. Auger ionization of semiconductor quantum drops in a glass matrix. J. Luminescence 47, 113–127 (1990).

    Google Scholar 

  4. Landsberg, P. T. Recombination in Semiconductors. (Cambridge Univ. Press, 1991).

  5. Iveland, J., Martinelli, L., Peretti, J., Speck, J. S. & Weisbuch, C. Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: Identification of the dominant mechanism for efficiency droop. Phys. Rev. Lett. 110, 177406 (2013).

    Google Scholar 

  6. Fuchs, G., Schiedel, C., Hangleiter, A., Harle, V. & Scholz, F. Auger recombination in strained and unstrained InGaAs/InGaAsP multiple quantum-well lasers. Appl. Phys. Lett. 62, 396–398 (1993).

    CAS  Google Scholar 

  7. Tiedje, T., Yablonovitch, E., Cody, G. D. & Brooks, B. G. Limiting efficiency of silicon solar cells. IEEE Trans. Electron Devices 31, 711–716 (1984).

    Google Scholar 

  8. Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).

    CAS  Google Scholar 

  9. Briggs, J. A., Arte, A. C. & Dionne, J. A. Narrow-bandwidth solar upconversion: case studies of existing systems and generalized fundamental limits. J. Appl. Phys. 113, 124509 (2013).

    Google Scholar 

  10. Seidel, W., Titkov, A., Andre, J. P., Voisin, P. & Voos, M. High-efficiency energy up-conversion by an Auger fountain at an InP-AlInAs type-II heterojunction. Phys. Rev. Lett. 73, 2356–2359 (1994).

    CAS  Google Scholar 

  11. Titkov, A., Seidel, W., Andre, J. P., Voisin, P. & Voos, M. Luminescence up-conversion by Auger process at InP-AlInAs type-II interfaces. Solid State Electron. 37, 1041–1044 (1994).

    CAS  Google Scholar 

  12. Nozik, A. J. Quantum dot solar cells. Physica E 14, 115–120 (2002).

    CAS  Google Scholar 

  13. Schaller, R. D. & Klimov, V. I. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar-energy conversion. Phys. Rev. Lett. 92, 186601 (2004).

    CAS  Google Scholar 

  14. Böhm, M. L. et al. Lead telluride quantum dot solar cells displaying external quantum efficiencies exceeding 120%. Nano Lett. 15, 7987–7993 (2015).

    Google Scholar 

  15. Delerue, C., Allan, G., Pijpers, J. J. H. & Bonn, M. Carrier multiplication in bulk and nanocrystalline semiconductors: mechanism, efficiency, and interest for solar cells. Phys. Rev. B 81, 125306 (2010).

    Google Scholar 

  16. Rabani, E. & Baer, R. Theory of multiexciton generation in semiconductor nanocrystals. Chem. Phys. Lett. 496, 227–235 (2010).

    CAS  Google Scholar 

  17. Stewart, J. T. et al. Carrier multiplication in quantum dots within the framework of two competing energy relaxation mechanisms. J. Phys. Chem. Lett. 4, 2061–2068 (2013).

    CAS  Google Scholar 

  18. Alig, R. C. & Bloom, S. Electron–hole-pair creation energy in semiconductors. Phys. Rev. Lett. 35, 1522–1525 (1975).

    CAS  Google Scholar 

  19. Efros, A. L., Kharchenko, V. A. & Rosen, M. Breaking the phonon bottleneck in nanometer quantum dots: role of Auger-like processes. Solid State Commun. 93, 281–284 (1995).

    CAS  Google Scholar 

  20. Delerue, C., Lannoo, M., Allan, G. & Martin, E. Auger and Coulomb charging effects in semiconductor nanocrystallites. Phys. Rev. Lett. 75, 2228–2231 (1995).

    CAS  Google Scholar 

  21. Hyeon-Deuk, K. & Prezhdo, O. V. Time-domain ab initio study of Auger and phonon-assisted Auger processes in a semiconductor quantum dot. Nano Lett. 11, 1845–1850 (2011).

    Google Scholar 

  22. Philbin, J. P. & Rabani, E. Electron–hole correlations govern Auger recombination in nanostructures. Nano Lett. 18, 7889–7895 (2018).

    CAS  Google Scholar 

  23. Califano, M., Zunger, A. & Franceschetti, A. Direct carrier multiplication due to inverse Auger scattering in CdSe quantum dots. Appl. Phys. Lett. 84, 2409–2411 (2004).

    CAS  Google Scholar 

  24. Zhu, H. et al. Auger-assisted electron transfer from photoexcited semiconductor quantum dots. Nano Lett. 14, 1263–1269 (2014).

    CAS  Google Scholar 

  25. Klimov, V. I. Multicarrier interactions in semiconductor nanocrystals in relation to the phenomena of Auger recombination and carrier multiplication. Annu. Rev. Cond. Matt. Phys. 5, 13.11–13.32 (2014).

    Google Scholar 

  26. Cirloganu, C. M. et al. Enhanced carrier multiplication in engineered quasi-type-II quantum dots. Nat. Comm. 5, 4148 (2014).

    CAS  Google Scholar 

  27. Kroupa, D. M. et al. Enhanced multiple exciton generation in PbS|CdS Janus-like heterostructured nanocrystals. ACS Nano 12, 10084–10094 (2018).

    CAS  Google Scholar 

  28. McGuire, J. A., Sykora, M., Joo, J., Pietryga, J. M. & Klimov, V. I. Apparent versus true carrier multiplication yields in semiconductor nanocrystals. Nano Lett. 10, 2049–2057 (2010).

    CAS  Google Scholar 

  29. Conwell, E. M. High Field Transport in Semiconductors. (Academic Press, New York, 1967).

  30. Benisty, H., Sotomayor-Torres, C. M. & Weisbuch, C. Intrinsic mechanism for the poor luminescence properties of quantum-box systems. Phys. Rev. B 44, 10945–10948 (1991).

    CAS  Google Scholar 

  31. Klimov, V. I. & McBranch, D. W. Femtosecond 1P-to-1S electron relaxation in strongly-confined semiconductor nanocrystals. Phys. Rev. Lett. 80, 4028–4031 (1998).

    CAS  Google Scholar 

  32. Klimov, V. I., McBranch, D. W., Leatherdale, C. A. & Bawendi, M. G. Electron and hole relaxation pathways in semiconductor quantum dots. Phys. Rev. B 60, 13740–13749 (1999).

    CAS  Google Scholar 

  33. Hendry, E. et al. Direct observation of electron-to-hole energy transfer in CdSe quantum dots. Phys. Rev. Lett. 96, 057408 (2006).

    CAS  Google Scholar 

  34. Vlaskin, V. A., Barrows, C. J., Erickson, C. S. & Gamelin, D. R. Nanocrystal diffusion doping. J. Am. Chem. Soc. 135, 14380–14389 (2013).

    CAS  Google Scholar 

  35. Rice, W. D. et al. Revealing giant internal magnetic fields due to spin fluctuations in magnetically doped colloidal nanocrystals. Nat. Nanotech. 11, 137–142 (2016).

    CAS  Google Scholar 

  36. Norris, D. J., Yao, N., Charnock, F. T. & Kennedy, T. A. High-quality manganese-doped ZnSe nanocrystals. Nano Lett. 1, 3–7 (2001).

    CAS  Google Scholar 

  37. Vlaskin, V. A., Janssen, N., van Rijssel, J., Beaulac, R. & Gamelin, D. R. Tunable dual emission in doped semiconductor nanocrystals. Nano Lett. 10, 3670–3674 (2010).

    CAS  Google Scholar 

  38. Chen, H.-Y., Chen, T.-Y. & Son, D. H. Measurement of energy transfer time in colloidal Mn-doped semiconductor nanocrystals. J. Phys. Chem. C. 114, 4418–4423 (2010).

    CAS  Google Scholar 

  39. Peng, B., Liang, W., White, M. A., Gamelin, D. R. & Li, X. Theoretical evaluation of spin-dependent Auger de-excitation in Mn2+-doped semiconductor nanocrystals. J. Phys. Chem. C. 116, 11223–11231 (2012).

    CAS  Google Scholar 

  40. Nawrocki, M., Rubo, Y. G., Lascaray, J. P. & Coquillat, D. Suppression of the Auger recombination due to spin polarization of excess carriers and Mn2+ ions in the semimagnetic semiconductor Cd0.95Mn0.05S. Phys. Rev. B 52, R2241–R2244 (1995).

    CAS  Google Scholar 

  41. White, M. A., Weaver, A. L., Beaulac, R. & Gamelin, D. R. Electrochemically controlled Auger quenching of Mn2+ photoluminescence in doped semiconductor nanocrystals. ACS Nano 5, 4158–4168 (2011).

    CAS  Google Scholar 

  42. Klimov, V. I. Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals. J. Phys. Chem. B 104, 6112–6123 (2000).

    CAS  Google Scholar 

  43. Barrows, C. J. et al. Electrical detection of quantum dot hot electrons generated via a Mn2+-enhanced Auger process. J. Phys. Chem. Lett. 8, 126–130 (2017).

    CAS  Google Scholar 

  44. Dong, Y., Parobek, D., Rossi, D. & Son, D. H. Photoemission of energetic hot electrons produced via up-conversion in doped quantum dots. Nano Lett. 16, 7270–7275 (2016).

    CAS  Google Scholar 

  45. Klimov, V. I. Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. Annu. Rev. Phys. Chem. 58, 635–673 (2007).

    CAS  Google Scholar 

  46. Klimov, V. I. & McBranch, D. W. Auger-process-induced charge separation in semiconductor nanocrystals. Phys. Rev. B 55, 13173–13179 (1997).

    CAS  Google Scholar 

  47. Zhu, H., Yang, Y., Wu, K. & Lian, T. Charge transfer dynamics from photoexcited semiconductor quantum dots. Annu. Rev. Phys. Chem. 67, 259–281 (2016).

    CAS  Google Scholar 

  48. Ithurria, S. & Talapin, D. V. Colloidal atomic layer deposition (c-ALD) using self-limiting reactions at nanocrystal surface coupled to phase transfer between polar and nonpolar media. J. Am. Chem. Soc. 134, 18585–18590 (2012).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Solar Photochemistry Program of the Chemical Sciences, Biosciences and Geosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy.

Author information

Authors and Affiliations

Authors

Contributions

V.I.K. conceived the study. W.L. and J.L. synthesized the QDs and conducted their microstructural characterization. R.S. conducted the spectroscopic studies. R.S., I.R. and V.I.K. analysed the data. R.S. and V.I.K. performed theoretical modelling. V.I.K. wrote the manuscript with input from other co-authors.

Corresponding author

Correspondence to Victor I. Klimov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–3 and Figs. 1–8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Liu, W., Lim, J. et al. Hot-electron dynamics in quantum dots manipulated by spin-exchange Auger interactions. Nat. Nanotechnol. 14, 1035–1041 (2019). https://doi.org/10.1038/s41565-019-0548-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-019-0548-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing